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AN EXACT TRANSFORMATION FROM GEOCENTRIC TO GEODETIC

COORDINATES FOR NONZERO ALTITUDES

David R. Hedgley, Jr.
Flight Research Center

INTRODUCTION

In space position measurement systems, it is often necessary to transform geo-
centric to geodetic coordinates. Consequently, it is important to have an exact
closed-form solution for the transformation that is free of embedded singularities.
An exact solution is particularly important for determining missile positions. All
the previous work in this area falls into two categories: formulas that are mathemat-
ically exact but involve equations that become unstable in the neighborhood of their
singularities, and formulas that are approximations that may or may not have inher-
ent singularities. References 1 and 2 are of the former type, and references 3 to 5
are of the latter.

Although some of these methods are adequate under some conditions, they have
limitations under certain circumstances. This paper presents an exact closed-form
solution for the transformation that is free of singularities. The solution permits
the evaluation of any of the existing methods under any conditions and should serve
as a primary standard.

The appendix contains computer subroutines that implement the ideas that
follow and examples of input and output data.

SYMBOLS

Parenthetical symbols are computer identifiers for variables.

a (A) major axis of ellipsoid

b (B) minor axis of ellipsoid

d the distance from any point in space to the ellipsoid
dx =X, T X



y
dz =25 2
e (E) eccentricity
f (F) flattening factor
flx,y,z) general function to be minimized
g restraint imposed on f
H function which is composite of functions fand g
h (ALT) altitude normal to the ellipsoid
hS (ALTS) altitude computed from distance formula
Py any point in space
P, the point on the ellipsoid that is the minimum distance from the
point p 0
tx percentage of error in dx
t ercentage of error in d
y P & y
tz percentage of error in dz
X coordinate axis that intercepts the Greenwich meridian
x,V,2 coordinates of any point on the ellipsoid
XY 20 coordinates of Py
(X0,Y0,7Z0)
Xg1Yg1 29 coordinates of Py
(X2,Y2,72)
Y coordinate axis that is in a direction normal to the plane deter-
mined by the intersection of X and Z
V4 coordinate axis that intercepts the poles




a (V) arbitrary real constant to be determined

£ error in o

}”e (ALONG) longitude east

}»W (ALONG) longitude west

¢ (ALAT) geodetic latitude
® geocentric latitude

ANALYTICAL FORMULATION

Let a model of the earth be an ellipsoid given by the following equation (ref. 6):
JC2 2 22
——2— + i/f + ;7 =1 (1)

a

where a > b. In addition, let Po (xo,yO,zo) be any point above the ellipsoid, as
shown in the sketch below.

h

Py (X9:¥9:29)




The line perpendicular to the surface of the ellipsoid from Py is the altitude of

Py above the ellipsoid and hence is the shortest distance from Py to that surface
(eq. (1)).
Therefore, by minimizing the distance from Po to the surface of the ellipsoid, it

is possible to acquire the coordinates (x2 s Voo and zz) of the point on the surface
that cause the distance defined by

1/2
d= [(x - x0)2 + (y - yO)Z + (z - 20)2] (2)
to be minimum.

The Lagrange multiplier method (ref. 7) is used to implement this minimization
where

fGy.2) = (== xg )+ (v = vg) + (27 20)°

and
22 2
g(x,y,z)=—§+zz—+—-2——1
a a b
Then
H(-x'yZG)Z(JC—-X‘)2“()"3’)2+(z—z)2—a—3§—2—+-ﬁ+-‘3—2-—1
0 0 0 2 2 e

If partial derivatives are taken in turn and each is equated to zero, the following
equations result:

M (- xy) - 9‘;2-2"2 =0 or x=xy/(1-0/a%) 3
%:2(3"3’0)_%222 =0 or y=y0/(1-a/02) 4)
%’;zz(z—zo)—“—;-zi =0 or z=zo/(1—a/b2) (5)
%:-fg-i—;—?u:o (6)



Equations (3) to (5) can be substituted into equation (6) as follows:

—[xo/(l - a/a2>] 2/a2 - [yo/ (1 - a/02>]2/02 - [zo/(l - a/bz)]z/bz +1=0

or

—xoz (b2 - 2a + a2/b2) - yo2 (bz - 20 + az/bz) - 202(02 - 20 + az/az) + (02 - 2a - ctz/az)(b2 - 200+ uz/bz) =0
Simplifying and collecting,

(1/(12b2)cz4 - 2(1/(12 + l/bz)oz3 + (4 + az/b2 + xoz/bz - yoz/b2 - zoz/a2>oz2
(M

2 2 2 2 2) 2,2 2b2_ 2172_2202=0

+2(x0 +Y, +zO -a -b a+ab—x0 Yo 0

This is a quartic equation in «¢ and can be solved in closed form (ref. 8). The
proper solution can be determined if the solution is restricted to the real zeros of
equation (7) and that zero of equation (7) is chosen that causes d to be smallest.
The appropriate solution of this quartic has no singularities. That is, a does not
approach plus or minus infinity, because that would imply from equations (3) to (5)
that Xos Vo and z, equal zero. Equations (3) to (5) do not become unstable,

because the statement « = a2 or o= b2 implies that Xgs Ygs OT Z, approaches

infinity. Since altitude is nonzero, o does not equal zero.

Let @ be that zero that satisfies the quartic equation. Then, from equations (3)
to (5),

- _ 2\ _ 2,( 2
Xy = x0/<1 ao/a ) = an /<a a0> (8)
Yo =y0/<1 —ao/a2>=y0a2/<a2 —a0> €))

_ _ 2\ _ 2 2
zy = zO/<1 ao/b ) = 20b /<b a0> aom

2 2 27/2
hg = [(xz - xo) + (yz - yo) + (22 - 20) ] (1)
_ .o -1
@ = sin (20 - zz)/hs (12)
A =tan L(y./x.)=tan ! y./x.) = -A (13)
e (¥2/%5) (Yo/*g) =



Although the foregoing formulas are mathematically exact, for computational reasons
it is usually advantageous to normalize all distances, because this minimizes errors
due to rounding off. However, errors due to rounding off are still possible. To
circumvent this problem for altitudes not near zero, consider the following error
analysis with respect to the computation of hs’ A, and .

Let € be a small error introduced in the computation of the zero of the quartic.
sy _ _ _ 2 _ . . .
In addition, let dz =257 25 = anO/(b a0>. Then the error in dz is introduced

by a, only, because a, b, Xgs Voo and z,are all exact. It is easy to show that the

0
percentage of error, tz’ of dz is as follows:

t,=-1+ (1 + e/ao)[<b2 - a0>/(b2 - ey - 8)]

From equation (10), b2 - a, > bz. Therefore |b2 - aol > Iaol > lsl, and since ¢

2

is small, (bz - a0>/(b -0y - s) ~ 1. Therefore tz ~ a/ao. Similarly,

ts ty ~ g/ ag.
Since equation (12) involves the ratio of two numbers with virtually equal

percentages of error, latitude is undisturbed by a small error in the computation of

ay due to rounding off.

As noted above, this analysis is valid only if the altitude does not approach zero;

otherwise g approaches zero and the value Ie/aol may approach infinity. The

instability of ls/aol suggests that equation (12) may become unstable under these
conditions.

This final problem can be resolved. If Py (x2 Yo 22) is the point on the

ellipsoid that intersects the normal drawn from p, (x,.y,,2,), the following equa-
. 00’70’70
tion (ref. 6) may be used:

@ = tan_l[tan m/(l - ez)] (14)

2 2\l/2

where tan w = 22/<x2 +ty, ) . From these relationships, ¢ may be determined
immediately. The error, if any, in tan ® introduced by the computational round-off

error in ag is inconsequential, because it can easily be shown that the percentage of

error in Xgs Yoo and Z9 is virtually zero. In fact, the percentage of error in z, and

.. 2 2 B _ 2 ( 2 _ ) _
x, Or y, is given by (b a0>/<b @ a) 1 and (a a0>/ a ay - € 1,
respectively. Since € is small for any value of @ the quantities




(bz - a0>/<b2 - aO - s) and (az - 010)/<c12 - ao - s) approximate 1 under any condi-
tions. Thus, equation (14) is preferable to equation (12) for determining geodetic
latitude for any altitude.

However, even the smallest error in a o causes more than negligible error in
the computation of hs (eq. (11)), because the error is amplified by the scaling

factor used to restore the true value of h after computations are completed. This
analysis suggests that it is preferable to use the following exact formulas from
reference 6 to compute h instead of equation (11):

1/2

xg = [a/(l - &2 sin® (p) + h:] cos ¢ cos A
1/2

Yo = [a/(l—e2 sinch) +h}coscp sin A

o 1/2
zy = [a(l - e")/(l - ez sin2 cp) + h] sin ¢

where f= (a- b)/a and e2 =2f - f2. Since latitude and longitude are known, h
can be computed directly and the proper equation can be chosen to compute h to
avoid division by values close to zero.

In this way the geodetic coordinates ¢, )»w, and h are determined exactly both

mathematically and computationally. Therefore, the computational accuracy of the
method is the accuracy of the computer used.

CONCLUDING REMARKS

A mathematically exact method for computing geodetic coordinates from geocen-
tric coordinates is derived. The computational accuracy achieved by using the
method is as accurate as the computer used. The transformation provides a primary
standard and makes possible the evaluation of any of the existing methods.

Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., November 4, 1975



APPENDIX

COMPUTER SUBROUTINES AND DATA SAMPLES

The following computer subroutines implement the theory presented in the text.
The subroutines were written in FORTRAN IV,

The comments in the listings should be sufficient for their comprehension and
modification. A sample input and output listing is provided to facilitate the verifi-
cation of the correct FORTRAN code.
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APPENDIX - Continued

Subroutine GEOD

SUBROUTINE GEOD(ELEy ELEMyELES+AZTILAZIV,AZISPHI,FHIM,PHIS,
FALMoALMM,ALMS yRANH,ALATALONG,ALT)

THIS SUBROUTINE CCMPUTES THE ALTITUCE, GEQODETIC LATITUDE AND
LONGITUDE GIVEN THE RANGE, AZIMUTH AND ELEVATICN CF A FCINT
WITH RESPECT TC A RADAR SITE.

ELE,ELEM,ELES ARE THE [EGREES, MIMUTES AND SECCNCS P ESPECTIVELY OF
ELEVATION OF THE TARGET WITH RESPECT TO A RADAR SITE.

AZI,AZIM,AZIS ARE THE DEGREES, MIMUTES AND SECCNCE RESPECTIVELY OF
AZIMUTH OF THE TARGET WITH RESPECT TO A RADAR SITE,

FKI, PHIM, PFIS ARE THE CEGREES, MINUTES AND SECCNDS RESPECTIVELY
OF THE GEODETIC LATITULCE OF T+E RADAR SITE,

ALM, ALMM, ALMS ARF THE CEGREES, MINUTES AND SECONDS PESPECTIVELY
CF THE LONGITUDE OF THE RADAR SITE,.

RAN IS THE RANGE OF THE TARGEY WITH RESPECT TC THE RACAR SITE,
H IS THE ALTITUDF OF THE RADAR SITE ABOVE THE REFERENCE ELLIFSOID.

ALAT IS THE COMPUTED GEODETIC LATITUDE.
ALONG IS THE CCMFUTED LONGITUCE,
ALY IS THE COMPUTED ALTITUNE,

DIMENSTION R(12),R0C0T(12)
NEFINE MAJOP AMD MINCR AXIS CF FLLIPSCID IN FEET,

£=20925832,
R=21854892,
F=(A=R)/A

CE=2%F-F*%2

NCRMALI7E IN UNITS OF &,

A=A/ZP

R=B/ZF
GK=3.,141592653¢
CCN=GX/180,.

CONVERT ANGLES FROM DEGREES TO RADIANS,

CLE=ELE+ (ELEM/60)+(ELES/3600)
PHI=PHI+(PHIM/ED) +(PHIS/2600)
AZI=AZI+{AZIM/60)+(AZIS/3600)
ALM=ALM+ {ALMM/EQ)+ (ALMS/3600)
ALM=360-ALM
PHI=PHI*CON
ALM=ALM¥CON
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APPENDIX - Continued

AZI=AZI*¥CON
ELE=ELE*CON

CCMPUTE THE TRANSFORFATICKN (F TARGET COORDINATES,
FROV FOLAR CC(RDINATES TC CARTESIAN COORCINATES,
CENTERED AT TRACKING RADAR,

XO0=RAN*SIN(AZI}*COS(ELE)
ZO=RAN*SIN(ELE)
YO=RAN®COS(A7 I) *CCS(ELE)

CCMPUTE THE TRANSFORMATION OF THE RADAR SITE GIVEN
IN GEODETIC POLAR CCCRDINATES TO0 CARTESIAN CCORDINATES
WITH RESPECT TO THE GEOCENTRIC CENTER OF THE EARTH,

EX=1/C1-CE¥(SIN(FHT) **2))
EX=ABS(EX)

EX=EX**,5

EX=EX*A

EQO=(EX+H)*COS {FHI)*CCS (ALM}
FO=(EX+H)*COS (PHI}Y*SIN(ALM)
GO=(ZX*(1=-CE)+H) *SIN(PHT)

CCMPUTES THE CIRECTION COSINES OF THE AXIS OF THE RADAFR SITE.

U1=-SIN{ALM)
U2=COS(ALM)

ui=0n
Vi==CCOS(ALM)*SIN(PHI}
V2==STINCALMY *SIN(PHI)
VI=COS({PHI)
Wi=COS(ALMI¥COS (FHI)
W2=SINUALM) *COS(FHI)
W3I=SIN(PHT)

CCMPUTE THE TRANSFORMATICN CF THE FCINT CR TBRGET
FROM CARTESIAM COCRCIMNATES CENTEREC AT TRACKIAG
RADAR TO GEOCENTRIC CARTESIAM COCFDINATES,

XE=X0FUL+YO*V1i+Z0%W1+ED
YS=XOFU24Y0*Y247Q%H2+4F 0
75=X0*US+YO¥VI+Z(*W3I+GO
X0=X5
YC=YS5
7C=2%

CCONSTRUCT THE COEFFICIENTS CF THE CUARTIC EGUATIONt
R(5) ¥ X¥¥4 ¢ R{4) ¥ X*¥*¥3 ¢ R(3) * x*¥2 ¢
R{2) * X +# R(1) = 1D

R(5)Y=1/7((A*R) *¥2)
Rk )==2% ((1/7(A**2)) ¢ (17 (A%*2)))

RE3)=u+((RZA)Y *¥2)+((A/R) *¥2) = ({XO/BI¥*¥2) = ((YO/E)**2) = {(Z20/R1%*2)

R{2)=2%(XO¥*24YO¥¥2+70%%2)=-2% (A¥*24+R*42)
R(1)=(A¥3)%*¥2-(XO¥R) ¥¥2-(YQ*R) ¥¥2 - (70%A) ¥¥*?

108
109
1190
111
112
113
114



APPENDIX - Continued

115 c CALL QUART TC SOLVE THE QUARTIC EQUATION FOR ALL 115
C REAL ZEROS WHERES 11€

c R = ARRAY QF COEFFICIENTS 117

[ ROOT = ARRAY QOF REAL ZER(S 118

c NI = NUMBER OF REAL ZER(S 119

120 C 1?20
CALL QUART(R,ROOT,NI) 121

c 122

C DETERMINE THE COORDINATES ON THE ELLIPSOID THATY 123

c MAKES THE DISTANCE FRCM THE TARGET T0 THE SURFACE A FMINIMUM, 124

125 c 12¢
PS=10,%*30 126

XJ = 0.0 127

YJ = 0.0 128

7J = 0.0 129

130 00 16 J=1,NI 138
V=RO0T (J) 131

X2=(XC¥A*R*2)/ (A¥*2-V) 112

Y2=(YC®A¥¥2) / (A¥¥2=-V) 133

22=(70%B*¥*%2) /(R*¥2-y) 134

135 XAz (=XO¥V)/ (A¥¥2-V) 13¢c
YA={=YC*V)/{A**2=-V)} 136

ZA=(=70%V)/ (R**2-V) 117
U=XA¥F24YA¥F247A%%2 138

U=y**, s 136

14D IFU.GT.PS) GO TO 16 14¢€
pE=y 141

XJ=X2 142

YJ=¥2 1473

7J=72 144

145 16 CONTINUE 145
X2=XJ 1456

YZ=YJ 147

72=12J 148

C 149

1:0 c THE ALTITUDE EQUALS THE MINIMUM JISTANCE FRCM THE 150
C TARGET TO THE SURFACE. 181

CCON=180./GK 182

C 153

o NETERMINE THE LONGITHUDE. 154

155 c 155
BLONG=ATANZ2{YO,X0) 15€

C 1€7

c NDETERMINE THE CECDETIC LATITUTCE. 1¢8

[os ]

1€0 DaX2¥%¥24Y2%%2 160
N=0**,5 161

AA=D¥(1.-CE) 162

ALAT=ATAN2(Z2,AA) 1€3

ALAT=SIGN(ALAT,ZO) 1€4

1€% Xi=X0%*ZP 1€5
Y1i=Y0*ZP 1€6

71=Z0% 7P 167
EX=14/(1,-CE*(SINIALAT) **2)) 1¢8

EX=ABS(EX) 1€9

170 EX=EX*¥,5 170
EX=EX*A1 171

11
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APPENDIX - Continued

COMPUTE ALTITUDE BY AN EXACT ECUATIOM WHICH PINIMIZES RCUND OFF

ERRORS,.

IF(ABS(SIN(ALAT)) 6T+411G60 TO 14
IF(ABS{COS(ALCNGY).GT..11G0 TC 15
ALT=(Y1/ (COS(ALATI*SIN(ALONG)))-EX

GC 70 710

ALT=(Z1/SINCALAT) )= (EX*(1-CE))

GC Y0 710

ALT=(X1/ (COSC{ALAT)*COS(ALONG)} ) ~-EX

CONTINUE

ALAT=ALAT*CON

CHANGE SIGN OF LCNGITUCE TO CCAFCRM WITH INPUT WHICKH
WAS IN DEGREES WEST 4o CALCULATICNS GIVE LOANGITLOE IN
DEGREES EAST, CHANGE SIGN TO GET LONGITUDE IN CEGREES
WEST, CONVERT FRCM RADIANS TO [EGREES.
ALONG=-ALONG*CCN

RETURN

END

172
173
174
178
176
1377
178
179
180
131
182
183
184
189¢
12¢
187
128
1239
1¢g
191
162
133
194
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APPENDIX - Continued

Subroutine QUART

SUBROUTINE QUART (RyRODT4 NI}

THIS ROUTINE SOLVES FOR THE REAL ZEROS ONLY VIA
FERRARI*S METHCD. (NEW FIRST COURSE IN THE THEORY OF
EQUATICNS, DICKSCN, PP, 51-52)

R IS THE ARRAY WHICH CONTAINS THE COEFFICIENTS OF THE
QUARTIC ARRANGED IN ASCENDING CROER.

R(5) ¥ X¥%, + R(4) * X¥*3 +

R{3} * X¥¥*2 ¢+ R(2) * X ¢ F{1) =0

THE ARRAY ROOT WILL CONTAIN THE REAL ZEROS CF THE QUARTIC

NI IS THE SCALAR VARTIABLE THAT STATES THE NUMBER OF REAL ZERGS

CIMENSION R{1),RCOT(1)
NI=0

NCRMALIZE CCEFFICIENTS SOt
X*¥4 + P¥YI®I &+ CH¥X¥*¥2 ¢+ D*Y + E = 0

0C 13 J=1,5
R{JI=R(JI/R(5)
A=Rty)

C=R{3)

n=R (2)

E=R({1)

CALCULATE CCEFFICIENTS AL, Ci, D1, OF THE RESCLVENT CUBIC
Y¥*¥3 &+ B1*Y**2 4+ Ci*Y + C1 =0
Bi=-~C
C1=3*D-4*E
Di==(A*¥*Z) *C+L¥C*E-D**2

IN SOLVING CUBIC EQUATION, CALCULATE COEFFICIENTS
OF THE CORRESFONDING REDUCELC CUBIC WHICH HAS NO TERW
OF THE SECOND DEGREE RY SETTINC ¥ = Z - B1/3!

I**3 + P*¥Z + Q = 0O

P=Ci-((B1**2)/3)
N=D1-((B1¥C1) /3) +{{(2¥(B1**3))/27)

THE DISCRIMINANT OF THE GENERAL CUBIC EQUATICN IS
EQUAL TO THE DISCRIMINANT CEL CF THE CORRESFONDING
REDUCED EQUATION,

DELT=18%B1*¥*C1*D1-4¥(B1 **3) ¥D1+(B17CY1) ¥32
DELV==4%(C1%*3)-27%(D1**2)
DEL=DELT+DELV

IF DEL IS NEGATIVE, CNE ROOT IS REAL, AND THO ARE
CCNJUGATE IMAGINARIES,

195
196
197
1¢8
199
200
2r1
202
203
204
205
20€
207
208
209
210
211
212
212
214

229
2130
231
232
232
234
235
236
237
238

240
244
242
243
244
245
246
247
248
24¢
250
281

13
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APPENDIX - Continued

IF(DEL.GE.0,)GC TO 12 252
RS=(P/3)**¥3+(Qs2) ¥*2 253
RS=ABS(RS) 254
A=((=-Q/2)+RS¥*,5) 255
W= ({=R/2)=(RS*¥,5)) 256
S=ABS{A) 257
T=ABS (W) 2%8
Wi=W 259
Ai=A 2€0
VV=1./3, 261
B=S*¥VV 2€2
W=T*¥yy 2€3
B=A*SIGN(1,,A1) 264
W=W*SIGN (1., H1) F£3-
2€6

Y1 IS THE SINGLE REAL ROCT CF THE REDUCELC CUBIC, 2€7

Y IS THE SINGLE REAL ROOT CF THE GENERAL CUPIC, 2€3
2€¢S

YizA+d 270
Y=¥1-(B1/D 271
G0 TO 10 272
CONTINLUE 273
274

IF DEL IS PCSITIVE, THERE ARE THREE DISTINCT REAL 27¢
RONDTS. IF DEL IS ZERO, THERE ARE AT LEASY TWO EAQUAL 276
RSAL ROCTS, 277
TRIGONCMETRIC SOLUTICM IS USEC. 278

79

TN={~-L*P/3) 281
TN=ABS(TN) 291
TN=TN*¥*,5 282
COS3A==,5%0* ({~-2/P)**1,5) 283
IF(ARS{COS34),CT,.1.) COSIA=SIGN(1,,C0S2A) 284
ARC=ACOS (C0S34) /3 285
COSA=COS (ARC) 286
Y{=TN*COSA 287
Y=Y1=(R1/3) 288
CCONTINUE 28¢
2990

3ACK TO SOLVING THE QUARTIC, WHERE Y IS SUCH THAT 291
R2¥X**2 ¢+ R2¥X 4+ (2 IS THE SQUARE OF A LINEAR FUNCTION, 292

M¥X ¢ N, AND ALSO EQUAL TO (X¥*¥2 + B¥X/2 ¢+ Y/2)*%2 293
294

AZ=,25% (B*¥2)=Ct+Y 295
B2=,5%R*Y=D 296
C2z,25%(Y*¥2) -E 2¢7
298

IF(A2.NE.0,)GC TO 111 2¢q
3og

IN CASE A2=0, (X*¥¥2 + B¥X/2 ¢+ Y¥/2)%%*2 = B2%X ¢+ C? 301
SINCE THE FCLYNCMIAL IS A FEFFECT SGUARE, BZ = @ 302
AND THE QUADORATICS TO BE SOLVEC ARE! 303
X¥%2 & B¥X/2 ¢ ¥Y/2 = C2%*,E = 0 AND 304

X*¥2 + B¥X/2 ¢+ Y/2 + (2%%,5 305

306

NEL1 (B/2)%%2 - 4L¥*(Y/2 =~ (2%%.,5) 307

DEL?2 (B/2)%%2 - L*(Y/2 + C2%*,5) 3gs
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APPENDIX - Continued

Dx1=8/2
ox2=B/2
GC TQ 223
CONTINUE

IN CASE A2 IS NCT 0, THEM b= A2%%,5, N = B2/(2%M),
THEN THE QUADORATICS 7O BE SQLVED ARES

X*%2 & (B/Z - M)*X ¢+ ¥Y/2 = N =240 AND
X¥%2 & (B/? ¢+ M)®X + ¥/2 # N = 0
A2=ARS(A2)
AM=AZ**,5

AN=T2 /{2 *AM}

Dx1=,5%B-AM

DX 2=,.C¥B+AM

DELL = (3/2 - AM)*%2 = 4%(Y/2 = AN}
DELZ = (B/2 + AM)®*2 = L4*(Y/2 + AMN)
CONTINUE

ROOTS OF TWO NUADRATICS ARE THE FOUFR ROCTS CF THE QUARTIC,

CNLY THE REAL ROOTS ARE RETURNED.

IF(DEL1.LT.0,1G0 TO 22

NI=NI+1

RONDTINIV=(=DX1/2) +((DEL1**, %) /2)
NI=NI+1

ROCT (NT)=({=-DX1/2)=-((DELL1**,5}/2)
IF(CEL24LTe0.360 TO 25

NI=NI+1
RCOTININ={=-0X2/2Y+{{DEL2¥*,E)/7)
NI=NT¢d

ROOT(NI) =(=-0X2/2)=-{{DEL2%*,5)/2)
CCNT INUF

RETURN

END

33E
336
337
ERE
329
340
341
342
343
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CUTPYT-==-

IMNPUT==mme

CUTPUT====

INPUT=eome

CUTPYT-emn
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APPENDIX - Concluded

Input and Output Data Samples

POINT COCRDINATES WRYT RADAR SITE

ELEVATIOMN DEG. 90.000D

AZI LEG. -0.0000

RANGE FEET 1000
RADAR SITE COORCINATES

GECCETIC LATITUCE 55.0000

LONGITUCE 22.0000

ALTITUGE FEEY -0, 0000
POINT COORCINATES

GECCETIC LATITUCE £5.0000

LONGITLDE 22.0000

ALTITUDE FEET .09%9
FOINT COQRCINATES WRT RADAR SITE

ELEVATIOM DEG. 90,0000

AZ1 DEG. -0.,0000

RANGE FEET €0000.0000
RADAR SITE COCRUOINATES

GECCETIC LATITUCE 44,0000

LONGITUDE 1241.0000

ALTITUDE FEET £00.0000
FOINT COCQRUINATES

GECCETIC LATITUCE 44,0000

LONCITUDE 121.00040

ALTITUDE FEET £0499,9300
FOINT COORIINATES WRT RADAR SITE

ELEVATICMN O0EG. 9Cc.0000

AZI DEG. -0.0000

RANGE FEET €€cceoc9g, 0000
RADAF SITE COCRCINATES

GECDETIC LATITUCE 33.0000

LONGITUOE 48.0000

ALTITUDE FEET 700.0000
FOINT COORIINATES

GECOETIC LATITUCE 32,0000

LONGITUCE 88,0000

ALTITUDE FEET {(C00C0€99.,D492

«550000C0N0D06E+02
«21€6CCC399RBE+ (2
+«€9855780/015E~-01

+L400C00002€4E 402
»120€699999399€+03
«5049€8B8339527+05

» 32€CCC399979E+02
« 87CCCCO993R3E402
«100CC0063905E+1D
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